

What are coroutines?

Coroutines allow us to execute several tasks at once. This is done in a controlled manner by passing control to each routine and waiting until the routine says it
has finished. We can reenter the routine to continue at a later time and by doing this repeatedly we achieve multi -tasking.

Multi-threading

Each task runs in a thread which is separate from the other threads. Having several tasks running at once is often called multi-threading. Because there is more
than one thread running at once our application is said to be multi-threaded.

There are different ways in which multi -threading can be implemented. Some systems allocate a fixed amount of time to each thread and take control away when
the time is up, passing control on to the next thread etc. This is called pre-emptive multi -threading. In this case each of the threads does not need to worry about
how much time it occupies, it is more concerned with its own function.

In other systems, a thread is concerned with how long it is taking. The thread knows it must pass control to other threads so that they can function as well. This is
is called cooperative , or collaborative multi-threading. Here, all of the threads are collaborating together to allow the application to operate properly. This is the
type of multi-tasking that Lua's coroutines use.

Coroutines in Lua are not operating system threads or processes. Coroutines are blocks of Lua code which are created within Lua, and have their own flow of
control like threads. Only one coroutine ever runs at a time, and it runs until it activates another coroutine, or yields (returns to the coroutine that invoked it).
Coroutines are a way to express multiple cooperating threads of control in a convenient and natural way, but do not execute in parallel, and thus gain no
performance benefit from multiple CPU's. However, since coroutines switch much faster than operating system threads and do not typically require complex and
sometimes expensive locking mechanisms, using coroutines is typically faster than the equivalent program using full OS threads.

Yielding

In order for multiple coroutines to share execution they must stop executing (after performing a sensible amount of processing) and pass control to another
thread. This act of submission is called yielding. Coroutines explicitly call a Lua function coroutine.yield(), which is similar to using return in functions.
What differentiates yielding from function returns is that at a later point we can reenter the thread and carry on where we left off. When you exit a function scope
using return the scope is destroyed and we cannot reenter it, e.g.,

Coroutines Tutorial
wiki

Seite 1 von 5lua-users wiki: Coroutines Tutorial

23.04.2004http://lua-users.org/wiki/CoroutinesTutorial

> function foo(x)
>> if x>3 then return true end -- we can exit the function before the end if need be
>> return false -- return a value at the end of the function (optional)
>> end
> = foo(1)
false
> = foo(100) -- different exit point
true

Simple usage

To create a coroutine we must have function which represents it, e.g.,

> function foo()
>> print("foo", 1)
>> coroutine.yield()
>> print("foo", 2)
>> end
>

We create a coroutine using the coroutine.create(fn) function. We pass it an entry point for the thread which is a Lua function. The object returned by Lua
is a thread:

> co = coroutine.create(foo) -- create a coroutine with foo as the entry
> = type(co) -- display the type of object "co"
thread

We can find out what state the thread is in using the coroutine.status() function, e.g.,

> = coroutine.status(co)
suspended

The state suspended means that the thread is alive, and as you would expect, not doing anything. Note that when we created the thread it did not start executing.
To start the thread we use the coroutine.resume() function. Lua will enter the thread and leave when the thread yields.

> = coroutine.resume(co)
foo 1
true

The coroutine.resume() function returns the error status of the resume call. The output acknowledges that we entered the function foo and then exited with

Seite 2 von 5lua-users wiki: Coroutines Tutorial

23.04.2004http://lua-users.org/wiki/CoroutinesTutorial

no errors. Now is the interesting bit. With a function we would not be able to carry on where we left off, but with coroutines we can resume again:

> = coroutine.resume(co)
foo 2
true

We can see we executed the line after the yield in foo and again returned without error. However, if we look at the status we can see that we exited the function
foo and the coroutine terminated.

> = coroutine.status(co)
dead

If we try to resume again a pair of values is returned: an error flag and an error message:

> = coroutine.resume(co)
false cannot resume dead coroutine

Once a coroutine exits or returns like a function it cannot be resumed.

More details

The following is a more complicated example demonstrating some important features of coroutines.

> function odd(x)
>> print('A: odd', x)
>> coroutine.yield(x)
>> print('B: odd', x)
>> end
>
> function even(x)
>> print('C: even', x)
>> if x==2 then return x end
>> print('D: even ', x)
>> end
>
> co = coroutine.create(
>> function (x)
>> for i=1,x do
>> if i==3 then coroutine.yield(-1) end
>> if math.mod(i,2)==0 then even(i) else odd(i) end
>> end

Seite 3 von 5lua-users wiki: Coroutines Tutorial

23.04.2004http://lua-users.org/wiki/CoroutinesTutorial

>> end)
>
> count = 1
> while coroutine.status(co) ~= 'dead' do
>> print('----', count) ; count = count+1
>> errorfree, value = coroutine.resume(co, 5)
>> print('E: errorfree, value, status', errorfree, value, coroutine.status(co))
>> end
---- 1
A: odd 1
E: errorfree, value, status true 1 suspended
---- 2
B: odd 1
C: even 2
E: errorfree, value, status true -1 suspended
---- 3
A: odd 3
E: errorfree, value, status true 3 suspended
---- 4
B: odd 3
C: even 4
D: even 4
A: odd 5
E: errorfree, value, status true 5 suspended
---- 5
B: odd 5
E: errorfree, value, status true nil dead
>

Basically we have a for loop which calls two functions: odd() when it encounters an odd number and even() on even numbers. The output may be a little
difficult to digest so we will study the outer loops, counted by count, one at a time. Comments have been added.

---- 1
A: odd 1 -- yield from odd()
E: errorfree, value, status true 1 suspended

In loop one we call our coroutine using coroutine.resume(co, 5). The first time it is called we enter the for loop in the coroutine function. Note that the
function odd(), which is called by our coroutine function yields. You do not have to yield in the coroutine function. This is an important and useful feature. We
return value of 1 with the yield.

---- 2
B: odd 1 -- resume in odd with the values we left on the yield
C: even 2 -- call even and exit prematurely

Seite 4 von 5lua-users wiki: Coroutines Tutorial

23.04.2004http://lua-users.org/wiki/CoroutinesTutorial

E: errorfree, value, status true -1 suspended -- yield in for loop

In loop 2, the main for loop yields and suspends the coroutine. The point to note here is that we can yield anywhere. We do not have to keep yielding from one
point in our coroutine. We return -1 with the yield.

---- 3
A: odd 3 -- odd() yields again after resuming in for loop
E: errorfree, value, status true 3 suspended

We resume the coroutine in the for loop and when odd() is called it yields again.

---- 4
B: odd 3 -- resume in odd(), variable values retained
C: even 4 -- even called()
D: even 4 -- no return in even() this time
A: odd 5 -- odd() called and a yield
E: errorfree, value, status true 5 suspended

In loop 4, we resume in odd() where we left off. Note that the variable values are preserved. The scope of the odd() function is preserved during a coroutine
suspend. We traverse to the end of even(), this time exiting at the end of the function. In either case, when we exit a function without using coroutine.yield
(), the scope and all its variables are destroyed. Only on a yield can we resume.

---- 5
B: odd 5 -- odd called again
E: errorfree, value, status true nil dead -- for loop terminates
>

Once again we resume in odd(). This time the main for loop reaches the limit of 5 we passed into the coroutine. The value of 5 and the for loop state were
preserved throughout execution of the coroutine. A coroutine preserves its own stack and state while in existance. When we exit our coroutine function it dies
and we can no longer use it.

FindPage · RecentChanges · preferences
edit · history
Last edited July 2, 2003 10:21 am PDT (diff)

Seite 5 von 5lua-users wiki: Coroutines Tutorial

23.04.2004http://lua-users.org/wiki/CoroutinesTutorial

