A No-Frills Introduction to Lua 5 VM Instructions

by Kein-Hong Man, esq. <khman AT users.sf.net>

Version 0.2, 20050106

Contents
1 Introduction 2
2 Lua Instruction Basics 3
3 Really Simple Chunks 5
4 Lua Binary Chunks 7
5 Instruction Notation 14
6 Loading Constants 15
7 Upvalues and Globals 18
8 Table Instructions 20
9 Arithmetic and String Instructions 21
10 Jumps and Calls 23
11 Relational and Logic Instructions 28
12 Loop Instructions 33
13 Table Creation 38
14 Closures and Closing 42
15 Digging Deeper 45
16 Acknowledgements 45
17 ChangelLog & ToDos 45

“A No-Frills Introduction to Lua 5 VM Instructions” isdensed under the Creative Commons
Attribution-NonCommercial-ShareAlike License 2.0. Youe dree to copy, distribute and
display the work, and make derivative works as long asgyeei the original author credit,
you do not use this work for commercial purposes, andufajter, transform, or build upon
this work, you distribute the resulting work only under angeeidentical to this one. See the
following URLSs for more information:

http://creativecommons.org/licenses/by-nc-sa/2. o/
http://creativecommons.org/licenses/by-nc-sa/2. 0O/legalcode

1 Introduction

This is a no-frills introduction to the instruction settbé Lua 5 virtual machine. Compared
to Perl or Python, the compactness of Lua makeslatively easier for someone to peek
under the hood and understand its internals. | think om& cannot completely grok a
scripting language, or any complex system for that mattighout slitting the animal open

and examining the entrails, organs and other yucky shaff isn't normally seen. So this

document is supposed to help with the “peek under the hobd” bi

Output from ChunkSpy (URLhttp://luaforge.net/projects/chunkspy/), aluab
binary chunk disassembler which | wrote while studying int@rnals, was used to generate
the examples shown in this document. The brief disably mode of ChunkSpy is very
similar to the output of the listing mode lakc , so you do not need to learn a new listing
syntax. ChunkSpy can be downloaded from LuaForge (WRk://luaforge.net/); it

is licensed under the same type of MIT-style licenseuass itself.

ChunkSpy has an interactive mode: you can enter a sourc& emdnget an immediate
disassembly. This allows you to use this document a®adl by entering the examples into
ChunkSpy and seeing the results yourself. The interactive madeo very useful when you
are exploring the behaviour of the Lua code generator oi sf@rt code snippets.

This is a quick introduction, so it isn’'t intended todbeomprehensive or expert treatment of
the Lua virtual machine (from this point on, “Lua” reféos‘’Lua 5” unless otherwise stated)

or its instructions. It is intended to be a simplesye®-digest beginner’s guide to the Lua
virtual machine instruction set — it won't do cartwheelblow smoke rings.

The objective of this introduction is to cover all thea virtual machine instructions and the
structure of Lua 5 binary chunks with a minimum of fuss. Tlfeyou want more detail, you
can usduac or ChunkSpy to study non-trivial chunks of code, or you can idieethe Lua
source code itself for the real thing.

Thisiscurrently a draft, and | am not a Lua internals expert. So feedback is welcome. If you
find any errors, or if you have anything to contribute please send me an e-mail (to khman AT
users.sf.nedbr mkh AT pl.jaring.my so that | can correct it. Thanks.

2 Lua Instruction Basics

The Lua virtual machine instruction set we will look @i particulaimplementation of the
Lua language. It is by no means the only way to skandticken. The instruction set just
happens to be the way the authors of Lua chose to implemesion 5 of Lua. The following
sections are based on the instruction set used in DU& Fhe instruction set might change in
the future — do not expect it to be set in stone. Ehizecause the implementation details of
virtual machines are not a concern to most users aptiegy languages. For most
applications, there is no need to specify how bytecodensrged or how the virtual machine
runs, as long as the language works as advertised. Samien that there is no official
specification of the Lua virtual machine instruction $bkére is no need for one; the only
official specification is of the Lua language.

In the course of studying disassemblies of Lua binary l&uyou will notice that many
generated instruction sequences aren't as perfect asvgald like them to be. This is
perfectly normal from an engineering standpoint. Theoomal Lua implementation is not
meant to be an optimizing bytecode compiler or a Jiler. Instead it is supposed to load,
parse and run Lua source code efficiently. It is the tgtafithe implementation that counts.
If you really need the performance, you are supposedoi diown into native C functions

anyway.

Lua instructions have a fixed size, 32 bits by defaultrintions are manipulated using the
platform’s native integer data type, which is usually abB2signed integer on 32-bit

machines. In binary chunks, endianness is significant, bilé \m memory, an instruction can
be portably decoded or encoded in C using the usual intkidfearsd mask operations. The
details can be found iopcodes.h

There are three instruction types and 35 opcodes (numberezLighl84) are currently in use
as of Lua 5.0.2. The instruction types are enumeratedB(S, iABX, iIAsBx, and may be
visually represented as follows:

31 24 23 16 15 87 0
\ \
iABC A8 B:9 C:9 Opcode:6
iABX A8 Bx:18 Opcode:6
iAsBx A8 sBx:18 Opcode:6
\

Lua 5 Instruction Formats

Instructions are encoded with unsigned integer fieldsg@ for sBx. Field sBx can represent
negative numbers, but it doesn’'t use 2s complement. Instela@s a bias equal to half the
maximum integer that can be represented by its unsignederpart, Bx. For a field size of
18 bits, Bx can hold a maximum integer value of 262143, arntlesbias is 131071. A value
of -1 will be encoded as (-1 + 131071) or 131070 or 1FFFE in hexadecimal

Fields A, B and C usually refers to register numbersu$é the term “register” because of its
similarity to processor registers). Although field A tise target operand in arithmetic
operations, this rule isn’t always true for other indiors. A register is really an index into
the current stack frame, register 0 being the bottostaufk position.

-3-

Unlike the Lua C API, negative indices (counting from tbp of stack) are not supported.
For some instructions, where the top of stack may hained, it is encoded as a special
operand value. Local variables are equivalent to ceregjisters in the current stack frame,
while dedicated opcodes allow read/write of globals an@lupsg.

Beyond a certain threshold, a value in fields B an& become an encoding of the number
of a constant in the constant pool of a function. Bfaule Lua has a maximum stack frame
size of 250. This is encoded BRAXSTACKIN llimits.h . S0, a value of 251 in field B
means that the operand is constant number 1 from theacopstol.

The maximum stack frame size in turn limits the maximumber of locals, and the limit is
set at 200, encoded &AXVARSIn llimits.h . Itis a useful bit of information to know,
especially if you are doing something in Lua that pustsesapabilities to the limit. Other
limitations found inllimits.h include the maximum number of upvalues (32), encoded as
MAXUPVALUESand the maximum number of parameters in a function (¥@oded as
MAXPARAMS

A summary of the Lua 5 virtual machine instruction sesifolows:

Opcode Name Description
0 MOVE Copy a value between registers
1 LOADK Load a constant into a register
2 LOADBOOL Load a boolean into a register
3 LOADNIL Load nil values into a range of registers
4 GETUPVAL Read an upvalue into a register
5 GETGLOBAL Read a global variable into a register
6 GETTABLE Read a table element into a register
7 SETGLOBAL Write a register value into a global variable
8 SETUPVAL Write a register value into an upvalue
9 SETTABLE Write a register value into a table element
10 NEWTABLE Create a new table
11 SELF Prepare an object method for calling
12 ADD Addition
13 SuUB Subtraction
14 MUL Multiplication
15 DIV Division
16 POW Exponentiation
17 UNM Unary minus
18 NOT Logical NOT
19 CONCAT Concatenate a range of registers
20 JMP Unconditional jump
21 EQ Equality test
22 LT Less than test
23 LE Less than or equal to test
24 TEST Test for short-circuit logical and and or evaluation
25 CALL Call a closure
26 TAILCALL Perform a tail call
27 RETURN Return from function call
28 FORLOOP Iterate a numeric for loop
29 TFORLOOP Iterate a generic for loop
30 TFORPREP Initialization for a generic for loop
31 SETLIST Set a range of array elements for a table
32 SETLISTO Set a variable number of table elements
33 CLOSE Close a range of locals being used as upvalues
34 CLOSURE Create a closure of a function prototype

3 Really Simple Chunks

Before heading into binary chunk and virtual machine instrmatletails, this section will
demonstrate briefly how ChunkSpy can be used to exploaeSLoode generation. All the
examples in this document were produced using ChunkSpy 0.9.4.

First, start ChunkSpy in interactive mode (user input isnsetld):

$ lua ChunkSpy.lua --interact

ChunkSpy: A Lua 5 binary chunk disassembler with no dependencies
Version 0.9.4 (20041121) Copyright (c) 2004 Kein-H ong Man

The COPYRIGHT file describes the conditions under w hich this
software may be distributed (basically a Lua 5-styl e license.)

Type 'exit' or 'quit' to end the interactive sessio n. 'help’ displays
this message. ChunkSpy will attempt to turn anythin g elseinto a
binary chunk and process it into an assembly-style listing.

A \' can be used as a line continuation symbol; th is allows multiple

lines to be strung together.

>

We'll start with the shortest possible binary chunk tizat be generated:

>do end
; source chunk: (interactive mode)
; X86 standard (32-bit, little endian, doubles)

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0002

[L]return 0 1

; end of function

ChunkSpy will treat your keyboard input as a small chunk ofdawace code. The library
functionstring.dump() Is first used to generate a binary chunk string, thamK®py will
disassemble that string and give you a brief assemmbfjubge-style output listing.

Some features of the listing: Comment lines are prefbyed semicolon. The header portion
of the binary chunk is not displayed with the briefestydata or header information that isn’t
an instruction is shown as an assembler directive witbt gorefix.luac -style comments are
generated for some instructions, and the instructioritot#s in square brackets.

A “do end ” generates a single RETURN instruction and does notéisg. There are no
parameters, locals, upvalues or globals. For theofdsie disassembly listings shown in this
document, we will omit some common header comments siow only the function
disassembly part. Instructions will be referenced $ynarked position, e.g. line [1]. Here is
another very short chunk:

>return

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0002

[L]return 0 1

[2]return 0 1

; end of function

A RETURN instruction is generated for evesturn in the source. The first RETURN (line
[1]) is generated by theeturn keyword, while the second RETURN (line [2]) is always
added by the code generator. This isn’t a problem,usecthe second RETURN never gets
executed anyway, and only 4 bytes is wasted. Perfewrggon of RETURN instructions
requires basic block analysis, and it is not done becthese is no performance penalty for
an extra RETURN, only a negligible memory penalty.

Notice in these examples, the minimum stack siZ& sven when the stack isn’'t used. The
next snippet assigns a constant value of 6 to the globablesa:

>a=6

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0002

.const "a" ;0

.const 6 ;1

[1]loadk 0 1 ; 6

[2] setglobal O O ;a
[B]return 0 1

; end of function

All string and number constants are pooled on a patifum basis, and instructions refer to
them using an index value which starts from 0. Globahk#e names need a constant string
as well, because globals are maintained as a table[1]ite@ads the value 6 (with an index to

the constant pool of 1) into register 0O, then line [2$ $ke global table with the constant “a”

(constant index 0) as the key and register O (holdiaghumber 6) as the value.

If we write the variable as a local, we get:

>| ocal a="hell 0"

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0002

docal "a" ;0
.const "hello" ;0
[1]loadk 0 O ; "hello"

[2]return 0 1
: end of function

Local variables reside in the stack, and they occupyaek Sor register) location for the
duration of their existence. The scope of a local éigs specified by a starting program
counter location and an ending program counter logatibis is not shown in a brief
disassembly listing.

The local table in the function tells the user thatstegiO is variablea. This information
doesn't matter to the VM, because it needs to know ergistimbers only — register
allocation was supposed to have been properly done byotlee generator. So LOADK in
line [1] loads constant O (the string “hello”) into isgr O, which is the local variabke A
stripped binary chunk will not have local variable nafeeslebugging.

Next we will take a look at the structure of Lua 5 bindmnyrks.

4 Lua Binary Chunks

Lua can dump functions as binary chunks, which can therritewto a file, loaded and run.
Binary chunks behave exactly like the source code frorawtiiey were compiled.

A binary chunk consist of two parts: a header block artdp-level function. The header
portion contains 12 elements:

Header block of a Lua 5 binary chunk
Default values are for a 32-bit little-endian platform with IEEE 754 doubles
as the number format. The header size on this platform is 22 bytes.

4 bytes Header signature: ESC, “Lua”

1 byte Version number, 0x50 (80 decimal) for Lua 5.0.2
» High hex digit is major version number
» Low hex digit is minor version number

1 byte Endianness
» O=big endian, 1=little endian
1 byte Size of int (in bytes) (default 4)
1 byte Size of size_t (in bytes) (default 4)
1 byte Size of Instruction (in bytes) (default 4)
1 byte Size of OP field (in bits) (default 6)
1 byte Size of A field (in bits) (default 8)
1 byte Size of B field (in bits) (default 9)
1 byte Size of C field (in bits) (default 9)
1 byte Size of size of a Lua number (in bytes) (default 8)
8 bytes* Test number (encoding of 3.14159265358979323846E7)

» The only field in the header that is endian-dependent.

* Changes depending on the field size given in the global header.

Thus the first 14 bytes of a Lua 5 binary chunk have firedtions. Since the characteristics
of a Lua virtual machine is hard-coded, the Lua undump codeohaseck the header bytes
and determine whether the binary chunk is fit forstonption or not. If you have a binary
chunk that does not match the characteristics oftlaeplatform you want to run it on, then
Lua will usually refuse to load the chunk.

In theory, a Lua binary chunk is portable; in real lifesrénis no need for the undump code to
support such a feature. If you need undump to load allskafdbinary chunks, you are
probably doing something wrong. If however you somehoedndis feature, you can try
ChunkSpy’s rewrite option, which allows you to convertiraaty chunk from one profile to
another.

Anyway, most of the time there is little need to®asly scrutinize the header, because since
Lua source code is usually available, a chunk can be readhipiled into the native binary
chunk format.

The header block is followed immediately by the top-leuattion or chunk:

Function block of a Lua 5 binary chunk

Holds all the relevant data for a function. There is one top-level function.
String source name

Integer line defined

1 byte number of upvalues

1 byte number of parameters

1 byte vararg function flag, true if non-zero

1 byte maximum stack size (number of registers used)
List source line positions for each instruction

List list of locals

List list of upvalues

List list of constants

List list of function prototypes

List list of instructions (code)

A function block in a binary chunk defines the prototypedtinction. To actually execute
the function, Lua creates an instancedosure) of the function first. A function in a binary
chunk consist of a few header elements and a bundtof

A Stringis defined in this way:

All strings are defined in the following format:

Size t String data size
Bytes String data, includes a NUL (ASCII 0) at the end

The string data size takes into consideration a NUL character at the end,
so an empty string (*”) has 1 as the size_t value. A size_t of 0 means zero
string data bytes; the string does not exist. This is often used by the source
name field of a function.

The source name is usually the name of the source file from which theatyi chunk is
compiled. It may also refer to a string. This source narspecified only in the top-level
function; in other functions, this field consists oofyaSize t with the value 0.

The line defined is the line number where the function prototype wasmeeéf Next comes
the number of upvalues, the number of parameters, kdwodlag to show whether the
function is a vararg function (a true is encoded as arf])a maximum stack size, all single-
byte values.

After the function header elements comes a number sftligtt store the information that
makes up the body of the function. Each list starth \&it Integer as a list size count,
followed by a number of list elements. Each liss ita own element format. A list size of O
has no list elements at all.

In the following boxes, a data type in square brackets,[leteger] means that there are
multiple numbers of the element, in this case an intéldsr count is given by the list size.
Names in parentheses are the ones given in the luueesy they are data structure fields.

Source line position list

Holds the source line number for each corresponding instruction in a
function. This information is used by error handlers or debuggers. In a
stripped binary, the size of this list is zero. The execution of a function does
not depend on this list.

Integer size of source line position list (sizelineinfo)

[Integer] list index corresponds to instruction position; the integer
value is the line number of the Lua source where the
instruction was generated

Next up is the locals list. Each local variable entag B fields, a string and two integers:

Locals list
Holds list of local variable names and the program counter range in which
the local variable is active.

Integer size of locals list (sizelocvars)

[
String name of local variable (varname)
Integer start of local variable scope (startpc)
Integer end of local variable scope (endpc)

]

The upvalues list and the constants list follows kical

Upvalues list
Holds list of upvalue names.

Integer size of upvalues list (sizeupvalues)
[String] name of upvalue

Constants list
Holds list of constants (it's a constant pool.)

Integer size of constants list (sizek)
[
1 byte type of constant (value in parentheses):
LUA_TNIL (0), LUA_TNUMBER (3) or LUA_TSTRING (4)
Const the constant itself: this field does not exist if the constant

type is O; it is a Number for type 3, and a String for type 4.

Number is the Lua number data type, normally an IEEE 754 64dibk. Integer, Size t
andNumber are all endian-sensitive, and they are converted n@mative endian during the
binary chunk loading, or undump, process. Their sizedf@mndats are of course specified in
the binary chunk header.

The function prototypes list comes after the constastts li

Function prototypes list
Holds function prototypes defined within the function.

Integer size of function prototypes (sizep)
[Functions] function prototype data, or function blocks

Function prototypes or function blocks have the exacesfmmmat as the top-level function
or chunk. However, function prototypes that isn't the top-lduaktion do not have the
source name field defined. In this way, function prototypesfferent lexical scoping levels
are defined and nested. In a complex binary chunk, tfttngemay be several levels deep. A
closure will refer to a function by its number in the. lis

The final list is the instruction list, or the actualdeoto the function. This is the list of
instructions that will actually be executed:

Instructions list
Holds list of instructions that will be executed.

Integer size of code (sizecode)
[Instruction] virtual machine instructions

The format of the virtual machine instructions were giwvethe last chapter. All of these lists
are not shared or re-used between functions: Locals,ugs/ahd constants referenced in the
code are specified in the respective lists in the sametion. A RETURN instruction is
always generated by the code generator, so the sizeingthections list should be at least 1.

In addition, locals, upvalues, constants and the immgirototypes are indexed using numbers
starting from 0. In disassembly listings, both the selire position list and the instructions

list are indexed starting from 1. Although all jumpated instructions use only signed

displacements, the scope of local variables is encoded) @bsolute program counter

positions, and these positions are based on a startleg of 1. This is also consistent with

the output fromuac .

How does it all fit in? You can easily generate aatisdl binary chunk disassembly using
ChunkSpy. Enter the following short bit of code and namdiltheimple.lua

local a = 8
function b(c) d = a + c end

Next, run ChunkSpy from the command line to generatédiney:

$ lua ChunkSpy.lua --source sinmple.lua > sinple.lst

-10-

The following is a description of the generated listggit into segments.

Pos Hex Data Description or Code
0000 ** source chunk: simple.lu a
** global header start **
0000 1B4C7561 header signature: "\27Lua"
0004 50 version (major:minor hex d igits)
0005 01 endianness (1=little endia n)
0006 04 size of int (bytes)
0007 04 size of size_t (bytes)
0008 04 size of Instruction (bytes)
0009 06 size of OP (bits)
000A 08 size of A (bits)
000B 09 size of B (bits)
000C 09 size of C (bits)
000D 08 size of number (bytes)
000E B6099368E7F57D41 sample number (double)
* x86 standard (32-bit, i ttle endian, doubles)

** global header end **

This is an example of a binary chunk header. ChunkSdy tas the global header to
differentiate it from a function header. For binahuoks specific to a certain platform, it is

easy to match the entire header at one go instead ofitesich field.

The global header is followed by the function heade¢hetop-level function:

0016 ** function [O] definition (level 1)
** start of function **
0016 0B000000 string size (11)
001A 73696D706C652E6C+ "simple.l"
0022 756100 "ua\0"
source name: simple.lua
0025 00000000 line defined (0)
0029 00 nups (0)
002A 00 numparams (0)
002B 00 is_vararg (0)
002C 02 maxstacksize (2)

The source name is only present in the top-level funchotop-level chunk does not have a
line number on which it is defined, so the field is Oefehare no upvalues or parameters
either, and it does not accept a variable number of gdeasa The stack size is set at the

minimum of 2 for this very simple chunk.

Next we come to the various lists, starting with therse line position list:

* lines:

002D 05000000 sizelineinfo (5)
[pc] (line)

0031 01000000 [1] (1)

0035 02000000 2] (2)

0039 02000000 [31(2)

003D 02000000 [4] (2)

0041 02000000 [5] (2)

There are 5 instructions in the top-level function. The®tor the first instruction was
defined on line 1, while the other 4 instructions weifindd on line 2.

-11-

* locals:

0045 01000000 sizelocvars (1)
0049 02000000 string size (2)
004D 6100 "a"

local [0]: a
004F 01000000 startpc (1)
0053 04000000 endpc (4)

* upvalues:
0057 00000000 sizeupvalues (0)

The top-level function has one local variable, nameddative from location 1 to location 4,
and it refers to register 0. There are no upvalues.

* constants:
005B 02000000 sizek (2)
005F 03 const type 3
0060 0000000000002040 const [O]: (8)
0068 04 const type 4
0069 02000000 string size (2)
006D 6200 "b"

const [1]: "b"

The top-level function requires two constants, the nurB@vhich is used in the assignment
on line 1) and the string “b” (which is used to refertte global variabld on line 2.)

On line 2 of the source, a function prototype was dettlarbe function prototype list holds
all the relevant information, a function block witharfunction block. ChunkSpy reports it as
function prototype number O, at level 2. Level 1 is theléopl function; there is only one
level 1 function, but there may be more than one function prmait other levels.

* functions:
006F 01000000 sizep (1)
0073 ** function [O] definition (level 2)
** start of function **
0073 00000000 string size (0)
source name: (none)
0077 02000000 line defined (2)
007B 01 nups (1)
007C 01 numparams (1)
007D 00 is_vararg (0)
007E 02 maxstacksize (2)
* lines:
007F 04000000 sizelineinfo (4)
pc] (line)
0083 02000000 [1] (2)
0087 02000000 2] (2)
008B 02000000 31 (2)
008F 02000000 [4]1 (2)
* locals:
0093 01000000 sizelocvars (1)
0097 02000000 string size (2)
009B 6300 "c"
local [0]: ¢
009D 00000000 startpc (0)
00A1 03000000 endpc (3)

Parameters are located from the bottom of the stackje single parameteiis at register 0.
It is also listed as a local, withsgartpc ~ value of 0.

-12-

* upvalues:

00A5 01000000 sizeupvalues (1)
00A9 02000000 string size (2)
00AD 6100 "a"

upvalue [0]: a
There is also an upvalua, which refers to the localin the parent (top) function.

* constants:

00OAF 01000000 sizek (1)
00B3 04 const type 4
00B4 02000000 string size (2)
00B8 6400 "d"
const [0]: "d"
* functions:
00OBA 00000000 sizep (0)
* code:
00BE 04000000 sizecode (4)
00C2 04000001 [1] getupval 1 O ;a
00C6 0C800001 [2] add 110
00CA 07000001 [3] setglobal 1 0 ; d
00CE 1B800000 [4]return 0 1

** end of function **

Functionb has 4 instructions. Most Lua virtual machine instructiaeseasy to decipher, but
some of them have details that are not immediatetieat. This example however should be
quite easy to understand. In line [1], O is the upvalaed 1 is the target register, which is a
temporary register. Line [2] is the addition operatioithwegister 1 holding the temporary
result while register O is the function parametein line [3], the globald (so named by
constant 0) is set, and in the next line, controdiarmed to the caller.

After the specification of function blocks in the ftioo prototypes list, the parent function
block resumes with its own code listing:

* code:
00D2 05000000 sizecode (5)
00D6 01000000 [1]loadk 0 O ; 8
00DA 22000001 [2] closure 1 O ; 1 upvalues
OODE 00000000 [3] move 00
00E2 47000001 [4] setglobal 1 1 ;b
00OE6 1B800000 [5]return 0 1

** end of function **

OOEA ** end of chunk **

The first line of the source code compiles to a simgg&ruction, line [1]. Locah is register O
and the number 8 is constant 0. In line [2], an instafdenction prototype O is created, and
the closure is temporarily placed in register 1. The MONMEruction in line [3] is actually
used by the CLOSURE instruction to manage the upvalueis not really executed. This
will be explained in detail in Chapter 14. The closurthen placed into the globhlin line
[4]; “b” is constant 1 while the closure is in registl. Line [5] returns control to the calling
function. In this case, it exits the chunk.

Now that we've seen a binary chunk in detail, we witbceed to look at each Lua 5 virtual
machine instruction.

- 13-

5 Instruction Notation

Before looking at some Lua virtual machine instructionse e little something about the
notation used for describing instructions. Instruction deisons are given as comments in
the Lua source filelopcodes.h . The instruction descriptions are reproduced in the
following chapters, with additional explanatory notesrédare some basic symbols:

R(A) Register A (specified in instruction field A)
R(B) Register B (specified in instruction field B)
R(C) Register C (specified in instruction field C)
PC Program Counter

Kst(n) Element n in the constants list

Upvalue[n] Name of upvalue with index n
Gbl[sym] Global variable indexed by symbol sym

RK(B) Register B or a constant index
RK(C) Register C or a constant index
sBx Signed displacement (in field sBx) for all kinds of jumps

The notation used to describe instructions is a litkle pseudo-C. The operators used in the
notation are largely C operators, while conditional estents use C-style evaluation.
Booleans are evaluated C-style. Thus, the notatiana®se translation of the actual C code
that implements an instruction.

The operation of some instructions cannot be clearkcriteed by one or two lines of
notation. Hence, this guide will supplement symbolitation with detailed descriptions of
the operation of each instruction. Having described aruictghn, examples will be given to
show the instruction working in a short snippet of loagle. Using ChunkSpy’s interactive
mode, you can choose to try out the examples yourself amasggnt feedback in the form of
disassembled code. If you want a disassembled listing thie byte values of data and
instructions, you can use ChunkSpy to generate a normal, vedigsssembly listing.

The program counter of the virtual machine (PC) alwaystpdo the next instruction. This
behaviour is standard for most microprocessors. Thasdlat once an instruction is read in
to be executed, the program counter is immediately updatedo Skip a single instruction
following the current instruction, add 1 (the displaeeth to the PC. A displacement of -1
will theoretically cause a JMP instruction to jump backo itself, causing an infinite loop.
Luckily, the code generator is not supposed to be able to upakeuff like that.

As previously explained, registers and local variablesravghly equivalent. Temporary
results are always held in registers. Instructiod$e and C can point to a constant instead
of a register for some instructions, this is when tk&lfivalue is MAXSTACK or bigger.
Finally, there is no set convention for source amgetaregisters; A is not always a single
target register in the classical RISC processor s@&isassembly listings preserve the A, B,
C operand field order for consistency.

- 14-

6 Loading Constants

Loads and moves are the starting point of pretty muklpracessor or virtual machine
instruction sets, so we’ll start with primitive loads anoves:

MOVE A B R(A) :=R(B)

Copies the value of register R(B) into register R(A). If R(B) holds a table,
function or userdata, then the reference to that object is copied. MOVE is
often used for moving values into place for the next operation.

The opcode for MOVE has a second purpose — it is also used in creating
closures, always appearing after the CLOSURE instruction; see CLOSURE
for more information.

The most straightforward use of MOVE is for assigningcall to another local:

>l ocal a,b = 10; b = a

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0002

docal "a" ;0

Jdocal "b" ;1

.const 10 ;0

[1]loadk 0 O ; 10
[2] loadnil 1 1

[3] move 10
[4return 0 1
; end of function

Line [3] assignsdopies) the value in locah (register 0) to locdb (register 1).

You won't see MOVE instructions used in arithmetic expi@s because they are not
needed by arithmetic operators. All arithmetic operatorsirar2- or 3-operand style: the

entire local stack frame is already visible to operd®@y, R(B) and R(C) so there is no need
for any extra MOVE instructions.

Other places where you will see MOVE are:
- When moving parameters into place for a function call.
When moving values into place for certain instructionsreviséack order is important, e.g.
GETTABLE, SETTABLE and CONCAT.
When copying return values into locals after a functidih ca
After CLOSURE instructions (discussed in Chapter 14.)

There are 3 fundamental instructions for loading canstanto local variables. Other
instructions, for reading and writing globals, upvalues ardesaare discussed in the
following chapters. The first constant loading iostion is LOADNIL:

LOADNIL AB R(A) := ... := R(B) := nil

Sets a range of registers from R(A) to R(B) to nil. If a single register is to
be assigned to, then R(A) = R(B). When two or more consecutive locals
need to be assigned nil values, only a single LOADNIL is needed.

-15-

LOADNIL uses the operands A and B to meamaage of register locations. The example for
MOVE in the last page shows LOADNIL used to set alsinggister tanil.

>l ocal a,b,c,d,e =nil,nil,0
; function [O] definition (level 1)

; 0 upvalues, 0 params, 5 stacks
function 0005

docal "a" ;0

Jdocal "b" ;1
ocal "c¢" ;2
Jocal "d" ;3
local "e" ;4
.const O ;0
[1] loadnil O 1
[2]loadk 2 O ;0
[3] loadnil 3 4
[4return 0 1

: end of function

In this example, line [1hils localsa andb. Line [3] nils localsd ande. If all the locals are to
be initialized tonil, then only a single LOADNIL will be needed.

LOADK ABXx R(A) := Kst(Bx)

Loads constant number Bx into register R(A). Constants are usually
numbers or strings. Each function has its own constant list, or pool.

LOADK loads a constant from the constants list imt@gister or local. Constants are indexed
starting from 0. Some instructions, such as arithmesitructions, can use the constants list
without needing a LOADK. Constants are pooled in tbe tluplicates are eliminated. The
list can holdnils, numbers or strings.

>l ocal a,b,c,d = 3,"foo", 3, "foo"
; function [O] definition (level 1)

; 0 upvalues, 0 params, 4 stacks

function 0004

Jlocal "a" ;
local "b"

Jocal "c"

ocal "d"

.const 3 ;
.const "foo" ;1
[1] loadk
[2] loadk
[3] loadk
[4] loadk
[5] return
: end of functio

CwNnRro

0 ;

1 ; "foo"
0 03
1

1
n

OCWNEFRO

; "foo"

The constant 3 and the constant “foo” are both writtgce in the source snippet, but in the
constants list, each constant has a single localiba constants list contains the names of
global variables as well, since GETGLOBAL and SETGL@BAakes an implied LOADK

operation in order to get the name string of a globaaklke first before looking it up in the
global table.

The final constant-loading instruction is LOADBOOL, fetting a boolean value, and it has
a little additional functionality.

-16-

LOADBOOL ABC R(A) := (Bool)B:; if (C) PC++

Loads a boolean value (true or false) into register R(A). true is usually
encoded as an integer 1, false is always 0. If C is non-zero, then the next
instruction is skipped (this is used when you have an assignment
statement where the expression uses relational operators, e.g. M = K>5.)

You can use any non-zero value for the boolean true in field B, but since
you cannot use booleans as numbers in Lua, it’s best to stick to 1 for true.

LOADBOOL is the only instruction for loading a booleaalue. It's also used where a
boolean result is supposed to be generated, becausenaldést instructions, for example,
do not generate boolean results — they perform conditiomps instead. The operand C is
used to optionally skip the next instruction (by incremenB@gby 1) in order to support such
code. For simple assignments of boolean valuesatvays 0.

>l ocal a,b = true,false
; function [O] definition (level 1)

; O upvalues, 0 params, 2 stacks
function 0002

Jocal "a" ;0

Jocal "b" ;1

[1] loadbool 0 1 O ;true

[2] loadbool 1 0 0 ;false
[B]return 0 1

; end of function

This example is straightforward: Line [1] assignge to locala (register 0) while line [2]
assigndalse to localb (register 1).

>l ocal a=5>2

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0002

docal "a" ;0

.const 5 ;0

.const 2 ;1

[1] It 1 251250 ;25,to[3]if false
(2] jmp 1 ; to [4]

[3] loadbool O 0 1 ;false,to[5]
[4] loadbool O 1 O ;true
[G]return 0 1

; end of function

This is an example of an expression that gives a bootesarit. Notice that Lua does not
optimize the expression intatieue value; it is not intended to do such optimizations.

Since the relational operator LT (which will be covkne greater detail later) does not give a
boolean result but performs a conditional jump, LOAREQOuses its C operand to perform
an unconditional jump in line [3] — this saves onerindion and makes things a little tidier.

In the disassembly, when LT tests 2 < 5, it evaluatesrie and doesn’'t perform a
conditional jump. Line [2] jumps over the “false” patihdan line [4], the loca& (register 0)
is assigned the booledarue by the instruction LOADBOOL. If 2 and 5 were reverskuag
[3] will be followed instead, settingfalse, and the “true” path (line [4]) will be skipped.

-17-

7 Upvalues and Globals

When the Lua virtual machine needs an upvalue or a glti®k are dedicated instructions
to load the value into a register. Similarly, wherupmalue or a global needs to be written to,
dedicated instructions are used.

GETGLOBAL ABXx R(A) := GbI[Kst(Bx)]

Copies the value of the global variable whose name is given in constant
number Bx into register R(A).

SETGLOBAL ABx GbI[Kst(BX)] := R(A)

Copies the value from register R(A) into the global variable whose name is
given in constant number Bx.

The GETGLOBAL and SETGLOBAL instructions are very gfhéforward and easy to use.

The instructions require that the global variable nama benstant, indexed by instruction
field Bx. R(A) is either the source or target regisiére names of the global variables used
by a function will be part of the constants list of thection.

>a = 40; local b = a

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0002

ocal "b" ;0
.const "a" ;0
.const 40 ;1

[1]loadk 0 1 ; 40
[2] setglobal O O ;a
[3] getglobal 0 O ;a
[4]return 0 1
; end of function

From the example, you can see that “b” is the namkeolbical variable while “a” is the name
of the global variable. Line [1] loads the number 40 intgister O (functioning as a
temporary register, since lodalhasn’'t been defined.) Line [2] assigns the value in teg®
to the global variable with name “a” (constant 0). By [3], local b is defined and is
assigned the value of globkal

GETUPVAL AB R(A) := UpValue[B]

Copies the value in upvalue number B into register R(A). Each function
may have its own upvalue list.

The opcode for GETUPVAL has a second purpose — it is also used in
creating closures, always appearing after the CLOSURE instruction; see
CLOSURE for more information.

SETUPVAL AB UpValue[B] := R(A)

Copies the value from register R(A) into the upvalue number B in the
upvalue list for that function.

- 18-

GETUPVAL and SETUPVAL uses the upvalues list. Only taenes of upvalues are stored
in the list. During execution, upvalues are set up by a QIRES and maintained by the Lua
virtual machine. In the following example, functibns declared inside the main chunk, and
is shown in the disassembly as a function prototype withifunction prototype. The
indentation helps to separate the two functions.

>l ocal a; function b() a =1 return a end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0002

Jocal "a" ;0

.const "b" ;0

; function [0] definition (level 2)

; 1 upvalues, 0 params, 2 stacks
function 1002
.upvalue "a" ;0
.const 1 ;0
[1]loadk 0 O ;
[2] setupval O O ;a
[3] getupval 0 O ;a
[4]return O 2
[G]return 0 1

; end of function

[1] loadnil O O

[2] closure 1 O ; 1 upvalues
[3] move 00

[4] setglobal 1 O b
[G]return 0 1

; end of function

In the main chunk (function O, level 1), loaalis first initialized tonil. The CLOSURE in
line [2] then instantiates function prototype O (functiore®gl 2) with a single upvalua.
Line [3] is part of the closure, it links localin the current scope to upvalaen the closure.
Finally the closure is assigned to global

In functionb, there is a single upvalua, In Pascal, a variable in an outer scope is found by
traversing stack frames. However, instantiationtwd functions are first-class values, and
they may be assigned to a variable and referenceavhedse. Managing upvalues thus
becomes a little more tricky than traversing stack fsamePascal. The Lua virtual machine
solution is to provide a clean interface via GETUPVAL a®8BTUPVAL, while the
management of upvalues part is handled by the virtual matbéie

Line [2] in functionb sets upvalua (upvalue number O in the upvalue table) to a number
value of 1 (held in temporary register 0.) In line [3], tfadue in upvalua is retrieved and
placed into register 0, where the following RETURN indiarcwill use it as a return value.

-19-

8 Table Instructions

Accessing table elements is a little more complax thiccessing upvalues and globals:

GETTABLE ABC R(A):=R(B)[RK(C)]

Copies the value from a table element into register R(A). The table is
referenced by register R(B), while the index to the table is given by RK(C),
which may be the value of register R(C) or a constant number.

SETTABLE ABC R(A)RK(B)] := RK(C)

Copies the value from register R(C) or a constant into a table element. The
table is referenced by register R(A), while the index to the table is given by
RK(B), which may be the value of register R(B) or a constant number.

All 3 operand fields are used, and some of the opereadsbe constants. A constant is
specified by biasing the constant number by MAXSTACK (2B0RK(C) need to refer to
constant 1, then it will have the value of (250+1) or 28llowing constants to be used
directly reduces considerably the need for temporatigterg.

>local p ={}; p[1] = "foo"; return p["bar"]
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0002

Jocal "p" ;0

.const 1 ;0

.const "foo" ;1

.const "bar" ;2

[1] newtable 0 0 0 ;array=0, hash=0
[2] settable 0 250 251 ; 1 "foo"

[3] gettable 1 0 252 ; "bar"

[4]return 1 2

[G]return 0 1

; end of function

In line [1], a new empty table is created and theresiee placed in locgb (register 0).
Creating and populating new tables is a little involvedt svill only be discussed later.

Table index 1 is set to “foo” in line [2] by the SETTABIifStruction. Both the index and the
value for the table element are encoded constant nmgm®g0 is constant O (the number 1)
while 251 is constant 1 (the string “foo”.) The R(Aglwe of O points to the new table that
was defined in line [1].

In line [3], the value of the table element indexed bysthieg “bar” is copied into temporary
register 1, which is then used by RETURN as a returmevé?52 is constant 2 (the string
“bar”) while 0 in field B is the reference to the @b

- 20-

9 Arithmetic and String Instructions

The Lua virtual machine’s set of arithmetic instructidosks like 3-operand arithmetic
instructions on an RISC processor. 3-operand instructims arithmetic expressions to be
translated into machine instructions pretty efficiently.

ADD
SuUB
MUL
DIV

ABC
ABC
ABC
ABC
ABC

R(A) := RK(B) + RK(C)
R(A) := RK(B) — RK(C)
R(A) := RK(B) * RK(C)
R(A) := RK(B) / RK(C)

POW R(A) := RK(B) * RK(C)

Binary operators (arithmetic operators with two inputs.) The result of the
operation between RK(B) and RK(C) is placed into R(A). These
instructions are in the classic 3-register style. RK(B) and RK(C) may either
be registers or constants in the constant pool.

ADD is addition. SUB is subtraction. MUL is multiplication. DIV is division.
POW is exponentiation.

The
field B or field C, then the constant will be loadetb a temporary register in advance.

>local a,b=2,4, a=a+4*b-al 2"b
; function [O] definition (level 1)
; 0 upvalues, 0 params, 4 stacks

function 0004

docal "a" ;0

Jdocal "b" ;1

.const 2 ;0

.const 4 ;1

1]loadk 0 O 2
2]loadk 1 1 14
3] mul 2 2511 ;4
4] add 2 0 2

5] pow 3 2501 ;2
6] div 303

7] sub 0 2 3
8lreturn 0 1

: end of function

source operands, RK(B) and RK(C), may be corsstéind constant is out of range of

Each arithmetic operator translates into a singleunson. This also means that while the

statement ¢ount = count + 1

" Is verbose, it translates into a single instructiocount

is a local. Ifcount is a global, then two extra instructions are requireddad end write to the
global (GETGLOBAL and SETGLOBAL), since arithmetoperations can only be done on
registers (locals) only.

Next up are instructions for performing unary minus anccegiOT:

UNM AB R(A) := -R(B)

Unary minus (arithmetic operator with one input.) R(B) is negated and the
value placed in R(A). R(A) and R(B) are always registers.

-21-

NOT

AB R(A) := not R(B)

Applies a boolean NOT to the value in R(B) and places the result in R(A).
R(A) and R(B) are always registers.

Here is an example:

>l ocal p,q = 10,

false; g,p = -p,not g

; function [O] definition (level 1)
; 0 upvalues, 0 params, 3 stacks

function 0003

Jocal "p" ;0
Jocal "g" ;1
.const 10 ;0
[1]loadk 0 O

[2] loadbool 1 0 O

[3] unm 20
[4] not 01
[5] move 12
[6] return O 1
; end of function

;10
; false

Both UNM and NOT do not accept a constant as a smpesand. When an unary minus is
applied to a constant number, the unary minus is omtnavay. Similarly, when aot is
applied totrue or false, the logical operation is optimized away.

CONCAT

Performs concatenation of two or more strings. In a Lua source, this is
equivalent to one or more concatenation operators (‘..") between two or
more expressions. The source registers must be consecutive, and C must
always be greater than B. The result is placed in R(A).

ABC R(A):=R(B).R(C)

Like LOADNIL, CONCAT accepts a range of registers. @pimore than one string
concatenation at a time is faster and more effidieamh doing them separately.

>l ocal x,y = "foo","bar"; return x..y..X..y
; function [O] definition (level 1)
; 0 upvalues, 0 params, 6 stacks

function 0006
Jdocal "x" ;0
Jocal "y" ;1
.const "foo" ;
.const "bar" ;

loadk O
loadk 1
move 2
move 3
move 4
move 5
concat 2
return 2 2
return 0 1
: end of function

OOO~NOUTEDWN -

In this example, strings are moved into place firsie@i[3] to [6]) in the concatenation order
before a single CONCAT instruction is executed in line [

-22-

10 Jumps and Calls

Lua does not have any unconditional jump feature inlahguage itself, but in the virtual
machine, the unconditional jump is used in control strestand logical expressions.

JMP sBx PC +=sBx

Performs an unconditional jump, with sBx as a signed displacement. sBx is
added to the program counter (PC), which points to the next instruction to
be executed. E.g., if sBx is 0, the VM will proceed to the next instruction.

JMP is used in loops, conditional statements, and in expressions when a
boolean true/false need to be generated.

For example, since a relational test instruction ma&esditional jumps rather than generate a
boolean result, a JMP is used in the code sequence findoaither d@rue or afalse:

>local m n; return m>=n
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0003

docal "'m" ;0

docal "n" ;1

1] loadnil 0 1

2] le 1 1 0 ;to[4]iffalse
3] jmp 1 ; to [5]

4] loadbool 2 0 1 ;false, to[6]
5]loadbool 2 1 0 ;true

6] return 2 2

7lreturn 0 1

: end of function

In line [3], the JMP skips over the false path (lidg) [to the true path (line [5]). More
examples where JMP is used will be covered in later erapt

Next we will look at the CALL instruction, for callingstantiated functions:

CALL ABC R(A), ..., R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1))

Performs a function call, with register R(A) holding the reference to the
function object to be called. Parameters to the function are placed in the
registers following R(A). If B is 1, the function has no parameters. If B is 2
or more, there are (B-1) return values.

If B is O, the function parameters range from R(A+1) to the top of the stack.
This form is used when the last expression in the parameter list is a
function call, so the number of actual parameters is indeterminate.

Results returned by the function call is placed in a range of registers
starting from R(A). If C is 1, no return results are saved. If C is 2 or more,
(C-1) return values are saved. If C is 0, then multiple return results are
saved, depending on the called function.

CALL always updates the top of stack value. The use of the top of stack is
implied in CALL, RETURN and SETLISTO.

-23-

Generally speaking, for fields B and C, a zero meansbliple results or parameters (up to
the top of stack) are expected. If the number of resulparameters are fixed, then the actual
number is one less than the encoded field value. Héne simplest possible call:

>z()

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0002

.const "z" ;0

[1] getglobal O O) Z

[2] call 011

[B]return 0 1

; end of function

In line [2], the call has zero parameters (field B iszEyo results are retained (field C is 1),
while register 0 temporarily holds the reference toftimetion object from globat. Next we
see a function call with multiple parameters or argument

>7(1,2,3)

; function [O] definition (level 1)

; O upvalues, 0 params, 4 stacks
function 0004

.const "z" ;0

.const 1 ;1

.const 2 ;2

.const 3 ;3

[1] getglobal O O) Z
[2]loadk 1 1
[8]loadk 2 2
[4]loadk 3 3
[5] call 041
[6] return O 1

; end of function

WN -

Lines [1] to [4] loads the function reference and thguarents in order, then line [5] makes

the call with field B value of 4, which means there &ugarameters. Since the call statement
iS not assigned to anything, no return results need tethmed, hence field C is 1. Here is an
example that uses multiple parameters and multiplenetalues:

>l ocal p,q,r,s = z(y())

; function [O] definition (level 1)

; 0 upvalues, 0 params, 4 stacks
function 0004

Jocal "p" ;0

Jocal "g" ;1

Jocal "r* ;2

Jocal "s" ;3

.const "z" ;0

.const "y" ;1

[1] getglobal

[2] getglobal
[3] call 1
[4] call 0
[G]return 0 1
; end of function

00
11
10
05

First, the function references are retrieved (linesafid [2]), then functiory is called first
(temporary register 1). The CALL has a field C of Gaming multiple return values are
accepted. These return values become the parameterstiorfun@nd so in line [4], field B

- 24-

of the CALL instruction is 0, signifying multiple parareet. After the call to functiom, 4
results are retained, so field C in line [4] is 5. Bnahere is an example with calls to
standard library functions:

>print(string.char(64))

; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0003

.const "print* ; 0

.const "string" ;1

.const “char" ;2

.const 64 ;3

getglobal 0 0O ; print
getglobal 1 1 ; string
gettable 1 1 252 ;"char"
loadk 2 3 ; 64

call 120
call 0 01
return 0 1

; end of function

~NOoO OIS WN

When a function call is the last parameter to anoftiaction call, the former can pass
multiple return values, while the latter can accept meligarameters.

Complementing CALL is RETURN:

RETURN AB return R(A), ... ,R(A+B-2)

Returns to the calling function, with optional return values. If B is 1, there
are no return values. If B is 2 or more, there are (B-1) return values,
located in consecutive registers from R(A) onwards.

If B is O, the set of values from R(A) to the top of the stack is returned. This
form is used when the last expression in the return list is a function call, so
the number of actual values returned is indeterminate.

RETURN also closes any open upvalues, equivalent to a CLOSE
instruction. See the CLOSE instruction for more information.

Like CALL, a field B value of 0 signifies multiple retuwalues (up to top of stack.)

>l ocal e,f,g; return f,g
; function [O] definition (level 1)

; 0 upvalues, 0 params, 5 stacks
function 0005

Jocal "e" ;0
Jdocal "f* ;1
Jocal "g" ;2
[1] loadnil O 2

[2] move 31
[3] move 4 2
[4]return 3 3
[G]return 0 1
; end of function

In line [4], 2 return values are specified (field Bualof 3) and those values are placed in
consecutive registers starting from register 3. Th@BEN in line [5] is redundant; it is
always generated by the Lua code generator.

- 25-

TAILCALL ABC return R(A)(R(A+1), ... ,R(A+B-1))

Performs a tail call, which happens when a return statement has a single
function call as the expression, e.g. return foo(bar) . Atail call is
effectively a goto, and avoids nesting calls another level deeper.

Like CALL, register R(A) holds the reference to the function object to be
called. B encodes the number of parameters in the same manner as a
CALL instruction.

Cisn’'t used by TAILCALL, since all return results are significant. In any
case, Lua always generates a 0 for C, to denote multiple return results.

A TAILCALL is used only for one specificeturn style, described above. Multiple return
results are always produced by a tail call. Here isxample:

>return x("foo", "bar")
; function [O] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
function 0003

.const "x" ;0

.const "foo" ;1

.const "bar" ;2

[1] getglobal O O) X
[2]loadk 1 1 ; "foo"
[8]loadk 2 2 ; "bar"
[4] tailcall O 3 O

[5]return 0 O

[6] return 0 1

; end of function

Arguments for a tail call are handled in exactly thms way as arguments for a normal call,
so in line [3], the tail call has a field B value ofsignifying 2 parameters. Field C is 0, for
multiple returns. In practice, field C is not used thg virtual machine since the syntax
guarantees multiple return results.

Line [5] is a RETURN instruction specifying multiple weh results, but as far as | can tell
from lvm.c , the virtual machine does not require the instructiorceQhe tail call transfers
execution to functiorx, a RETURN in functiorx will not cause the virtual machine to arrive
back at line [5]. Line [6] is also redundant. No harm done, twiyredundant instructions.

Finally, we have a special form of a call instructi®&LF, which is used for object-oriented
programming:

SELF ABC R(A+1):= R(B): R(A) := R(B)[RK(C)]

For object-oriented programming using tables. Retrieves a function
reference from a table element and places it in register R(A), then a
reference to the table itself is placed in the next register, R(A+1). This
instruction saves some messy manipulation when setting up a method call.

R(B) is the register holding the reference to the table with the method. The
method function itself is found using the table index RK(C), which may be
the value of register R(C) or a constant number.

- 26-

A SELF instruction saves an extra instruction and spepdke calling of methods in object-
oriented programming. In the following example:

>f 0o: bar (" baz")

; function [O] definition (level 1)
; 0 upvalues, 0 params, 3 stacks
function 0003

.const "foo" ;0

.const "bar" ;1

.const "baz" ;2

[1] getglobal O O ; foo

[2] self 0 0 251 ;"bar"
[8]loadk 2 2 ; "baz"
[4] call 031

[G]return 0 1

; end of function

The SELF in line [2] is equivalent to a GETTABLE lookupdttable is in register 0 and the
index is constant 1) anat the same time, a MOVE (copying the table from register O to
register 1.) Without SELF, a GETTABLE cannot write register 0 because the table
reference will be overwritten before a MOVE can beneloHence, SELF saves one
instruction and one temporary register slot.

After setting up the method call using SELF, the sathade with the usual CALL instruction
in line [4], which is equivalent to the followinfpo.bar (foo, " baz")

Next we will look at more complicated instructions.

-27-

11 Relational and Logic Instructions

Relational and logic instructions are used in conjunctidh other instructions to implement
control structures or expressions. Instead of gengrdioolean results, these instructions
performs a conditional jump over the next instructislence, there is always a “true path”
and a “false path”.

EQ ABC if ((RK(B) == RK(C)) ~= A) then pc++
LT ABC if (RK(B) < RK(C))~= A) then pc++
LE ABC if (RK(B) <= RK(C)) ~= A) then pc++

Compares RK(B) and RK(C), which may be registers or constants. If the
boolean result is not A, then skip the next instruction. Conversely, if the
boolean result equals A, continue with the next instruction.

EQ is for equality. LT is for “less than” comparison. LE is for “less than or
equal to” comparison. The boolean A field allows the full set of relational
comparison operations to be synthesized from these three instructions.

By comparing the result of the relational operatiorhviit the sense of the comparison can be
reversed. Obviously the alternative is to reverse thiespaken by the instruction, but that
will probably complicate code generation some more.

>l ocal X,y; return x ~=y
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0003

Jdocal "x" ;0

Jocal "y" ;1

1] loadnil 0 1

2] eq 0 0 1 ;to[4]iftrue
3] jmp 1 ; to [5]

4] loadbool 2 0 1 ;false, to[6]
5]loadbool 2 1 0 ;true

6] return 2 2

7lreturn 0 1

: end of function

In the above example, the inequality comparison is cempihto an EQ in line [2].
Relational expressions always perform the conditigurap for the false path, while for the
true path, the next instruction is executed. Hence tlepgath is from [2] to [3] to [5]; the
result is true if the EQ comparison evaluates to falseg sve are using the= operator. This
is because A selects the comparison result to use thedttie in this case we waxt=y to
returntrue if the EQ comparison fails, and selecting “fail” meaA is 0. The false path
follows the conditional jump, from [2] to [4] to [6]. THe field in the LOADBOOL in line
[4] is set so that line [5], which is part of the true patin be skipped. In line [6], the boolean
result which is now in temporary register 2 is returmethé caller.

ChunkSpy comments the EQ in line [2] by letting the usemkwben the conditional jump is
taken. In this case, the jump to the false path is takktem “the value in register O equals to
the value in register 1” isue. This is always the opposite of the A field value, \wmhselects
the true path to be taken. Anyway, note that thesd.@aecode generator conventions, and
there are other ways to coxle=Yy in terms of Lua virtual machine instructions.

-28-

For conditional statements, there is no need tdselean results. So Lua is optimized for
coding the more common conditional statements rakiagr conditional expressions.

>| ocal

.const "foo"
.const "bar"
loadnil
€q

Jjmp

loadk
return
Jjmp

loadk
return
return
: end of functio

OOO~NOUTEDWN -

X, Y,

0
1
3
2
2
2
2
2

0

0
1

0

if x ~=y then return "foo" else return "bar" end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks

function 0003
Jocal "x" ;0
Jocal "y" ;1

1

N O

SRprNpR

1

; to [4] if false
;1o [7]
; "fOO"

;1o [9]
; "bar"

In the above conditional statement, the same inegu@ierator is used in the source, but the
sense of the EQ instruction in line [2] is now reversgidce the EQ conditional jump can

only skip the next instruction, additional JMP instructioresreeeded to allow large blocks of

code to be placed in both true and false paths. Itrasinin the previous example, only a

single instruction is needed to set a boolean value.

The true path (wher ~=y is true) goes from [2] to [4]-[6] and on to [9]. Sincerthes a
RETURN in line [5], the JMP in line [6] and the RETURMN[9] are never executed at all;
they are redundant but does not adversely affect penfmeniaa any way. The false path is
from [2] to [3] to [7] onwards. So in a disassembly figtiyou should see the true and false
code blocks in the same order as in the Lua source.

>f 8 >9 then return 8 elseif 5 >= 4 then return 5 else return 9 end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0002
.const 8 ;0
.const 9 ;1
.const 5 ;2
.const 4 ;3
0 251250 ;98,to[3]iftrue

01
02
03
04
05
06
07
08
09
10
11
12
13

: end of functi

h
Jmp
loadk
return
Jmp
!e
Jmp
loadk
return
Jmp
loadk
return
return

\loOw

0
2

; to [6]
;8

; to [13]

0 253252 ;45,to([8]if true

NoOw

OOO0o

PN

n

; to [11]
75

; to [13]
09

This example is a little more complex, with@seif, but it is structured in the same order as
the Lua source, so interpreting the disassembled cod&lghmitbe too hard.

- 29-

TEST ABC if (R(B) <=>C)then R(A) := R(B) else pc++

Used to implement and and or logical operators, or for testing a single
register in a conditional statement.

Register R(B) is coerced into a boolean and compared to the boolean field
C. If R(B) matches C, the next instruction is skipped, otherwise R(B) is
assigned to R(A) and the VM continues with the next instruction. The and
operator uses a C of O (false) while or uses a C value of 1 (true).

TEST is a little more complex than a boolean tedt @nditional jump combination because
Lua has short-circuit LISP-style logical operatord tighains and propagates operand values
instead of booleans. First, we’ll look at hemnd andor behaves:

>l ocal a,b,c; ¢c =aandb
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0003

Jocal "a" ;0
Jocal "b" ;1
Jocal "¢" ;2

[1] loadnil O 2
[2] test 2 0 0 ;to[4]iftrue
[B]jmp 1 ;to[9]

[4] move 21

[G]return 0 1

; end of function

The and operatorpropagates false operands (which can befalse or nil) because anfalse
operands in a string @hd operations will make the whole boolean expressabse. When a
string ofand operations evaluates to true, the result iddleoperand value.

In line [2], the first operand (the loca) is retained when the testfase (with a field C of 0),
while the jump to [4] is made when the testrige, and then in line [4], the expression result
is set to the second operand (the ldnal

>l ocal a,b,c; c =aor b
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0003

Jocal "a" ;0
Jocal "b" ;1
Jocal "¢" ;2

[1] loadnil O 2
[2] test 2 0 1 ;to[4]iffalse
[B]jmp 1 ;to[9]

[4] move 21

[5]return 0 1

; end of function

Theor operatoipropagates the first true operand, because anyue operands in a string of
operations will make the whole boolean expressimre. When a string obr operations
evaluates tdalse, all operands must have evaluatedaise.

In line [2], the local value is retained if it isrue, while the jump is made if it ikalse. Thus
in line [4], the locab value is the result of the expression if loa&valuates tdalse.

- 30-

Short-circuit logical operators also means that tHeviohg Lua code does not actually use a
boolean operation:

>l ocal a,b,c; if a>b and a > c then return a end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks

function 0003

docal "a" ;0

Jdocal "b" ;1

ocal "c¢" ;2

1] loadnil 0 2

2] It 0 1 0 ;to[4]iftrue
3] jmp 3 ; to [7]

4] It 0 2 0 ;to[6]iftrue
5] jmp 1 ; to [7]
6lreturn 0 2

7lreturn 0 1

: end of function

With short-circuit evaluatiora > c is never executed & > b is false, so the logic of the Lua
statement can be readily implemented using the noramalitional structure. If botla > b
anda > c aretrue, the path followed is [2] (tha > b test) to [4] (thea > c test) and finally to
[6], returning the value . The TEST instruction is not required.

For a single variable used in the expression partooinaitional statement, TEST is used to
boolean-test the variable:

> f Done then return end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0002

.const "Done" ;0

[1] getglobal O O ; Done
[2] test 0 0 0 ;to[4]iftrue
[B]jmp 1 ;to[9]
[4]return 0 1

[G]return 0 1

; end of function

In line [2], the TEST instruction jumps to the true pdtthe value in temporary register 0
(from the globalDone) is true. If the test expression of a conditional stateneamisist of
purely boolean operators, then a number of TEST instructvdhbe used in the usual short-
circuit evaluation style:

> f Found and Match then return end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0002

.const "Found" ;0

.const "Match" ;1

1] getglobal 0 0O ; Found

2] test 0 0 0 ;to[4]iftrue
3] jmp 4 ; to [8]

4] getglobal 0 1 ; Match

5] test 0 0 0 ;to[7]iftrue
6] jmp 1 ; to [8]
7lreturn 0 1

8]return 0 1

: end of function

-31-

In the last example, the true code block of the cadht statement is executed only if both
Found andMatch evaluates tarue. The path is from [2] (test fdfound) to [4] to [5] (test
for Match) to [7] (the true path code block, which is an explieturn statement.)

Finally, here is how Lua’s ternary operatc?)(equivalent works:

>l ocal a,b,c; a =a and b or ¢
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks
function 0003

docal "a" ;0

Jdocal "b" ;1

ocal "c¢" ;2

1] loadnil 0 2

2] test 0 0 0 ;to[4]iftrue
3] jmp 2 ; to [6]

4] test 0 1 1 ;to[6]iffalse
5] jmp 1 ; to [7]

6] move 0 2

7lreturn 0 1

: end of function

The TEST in line [2] is for thend operator. First, locad is tested in line [2]. If it idalse,
then execution continues in [3], jumping to line [6]. L{&§ assigns locat to the end result
because since # is false, thena and b is false, andfalse or cisc.

If local ais truein line [2], the TEST instruction makes a jump to line, Mhere there is a
second TEST, for ther operator. Ifb evaluates tdrue, then the end result is assigned the
value ofb, becausd or cisb if b is notfalse. If b is alsofalse, the end result will be.

For the instructions in line [2], [4] and [6], the tar@etfield A) is register O, or the local
which is the location where the result of the boolegpression is assigned.

-32-

12 Loop Instructions

Lua has dedicated instructions to implement the two tgbésr loops, while the other two
types of loops uses traditional test-and-jump.

FORLOOP A sBx R(A)+=R(A+2)
if R(A) <?= R(A+1) then PC+= sBx

Performs an iteration of a numeric for loop. A numeric for loop requires 3
registers on the stack, and each register must be a number. R(A) holds the
initial value and doubles as the loop variable; R(A+1) is the limit; R(A+2) is
the stepping value.

A jump is made back to the start of the loop body if the limit has not been
reached or exceeded. The sense of the comparison depends on whether
the stepping is negative or positive, hence the “<?=" operator. The jump is
encoded as a signed displacement in the sBx field. An empty loop has a
sBx value of -1.

Since a for loop need to perform an initial test prior to the start of the first
iteration, the initial value is given a negative step, i.e. the initial value is
subtracted by the step and the loop starts at a FORLOOP instruction. The
first time FORLOOP is reached, a step is made, thus restoring the initial
value before the first comparison. See the examples for an illustration.

The loop variable ends with the last value before the limit is reached
(unlike C) because it is not updated unless the jump is made. However,
since loop variables are local to the loop itself, you should not be able to
use it unless you cook up an implementation-specific hack.

For the sake of efficiency, FORLOOP contains a lofuattionality, so when a loop iterates,
only oneinstruction, FORLOOP, is needed. Here is a simple exampl

>local a =0; for i = 1,100,5 do a = a + i end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 4 stacks

function 0004

docal "a" ;0

Jdocal "i" ;1

Jocal "(for limit)" ; 2

Jocal "(for step)" ;3

.const O ;0

.const 1 ;1

.const 100 ;2

.const 5 ;3

1] loadk
loadk
loadk
loadk

2 ;
3 : 100
4

5] sub

6

7

8

9

05

FPwNnko

3
;1o [8]
1
-2 ; to [7] if loop
1
n

Jjmp
add
forloop
return
: end of functio

OpRpOFRFFPwNvdrRO
o

- 33-

In the last example, notice that tiwe loop causes two additional local pseudo-variables to be
defined, apart from the loop indek, The two pseudo-variables, nam@dr limit) and

(for step) are required to completely specify the state of the,l@long with the loop index,
and are not visible to Lua source code. The thrégyr limit) and(for step), are arranged in
consecutive registers, with the loop index given by R(A).

The loop body is in line [7] while line [8] is the FORIOP instruction that steps through the
loop state. The sBx field of FORLOOP is negativeit abwvays jumps back to the beginning
of the loop body.

Lines [2]—[4] initializes the three register locatiombere the loop state will be stored. If the
loop step is not specified in the Lua source, a cohdtas added to the constant pool and a
LOADK instruction is used to initialize the pseudo-variafh@ step) with the loop step.

Lines [5]-[6] makes a negative loop step and jumps to[8héor the initial test to be done.
In the example, at line [6], the loop indefat register 1) will be (1-5) or -4. When the virtual
machine arrives at the FORLOORP in line [8] for thet firhe, one loop step is made prior to
the first test, so the value that is actually t@stgainst the limit is (-4+5) or 1. Since 1 < 100,
the conditional jump is made to line [7], starting tingt iteration of the loop.

The loop at line [7]-[8] repeats until the loop inderxceeds the loop limit of 100. The
conditional jump is not taken when that occurs andidbp ends. Beyond the scope of the
loop body, the loop statg, (for limit) and(for step)) is not valid. This is determined by the
parser and code generator. The range of PC values foln wie loop state variables are valid
is located in the locals list. The brief assemkdyirigs generated by ChunkSpy that you are
seeing does not give the startpc and endpc values contaitiesl locals list. In theory, these
rules can be broken if you write Lua assembly directly.

>for i =10,1,-1 do if i == 5 then break end end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks

function 0003

Jocal "i* ;0

Jocal "(for limit)" ; 1

Jocal "(for step)" ; 2

.const 10 ;0

.const 1 ;1

.const -1 ;2

.const 5 ;3

Ol]loadk O O ;10
02]loadk 1 1 01

03]loadk 2 2 -1

04] sub 00 2

05] jmp 3 ; to [9]

06] eq 0 0 253 ;5,to[8]if true
07] jmp 1 ; to [9]

08] jmp 1 ; to [10]

09] forloop 0 -4 ; to [6] if loop
10]return 0 1

: end of function

In the second loop example above, except for a negltop step size, the structure of the
loop is identical. The body of the loop is from line {6]line [9]. Since no additional stacks
or states are usedbaeak translates simply to a JMP instruction (line [8]).efd is nothing
to clean up after a FORLOOP ends or after a JMP tadaibp.

- 34-

The next instruction, TFORPREP, is largely for compktbivith Lua 4 source code:

TFORPREP A sBx iftype(R(A)) == table then
R(A+1):=R(A), R(A):=next;
PC += sBx

Optionally initializes the Lua 4 table form of the generic for loop, for
compatibility. In Lua 5, the elements for the iterated form of the generic for
loop should already be in place (see TFORLOOP below), and the only
thing TFORPREP does is an unconditional jump in order to execute
TFORLOORP for the first time. The sBx field contains the signed
displacement for the jump.

For Lua 4 compatibility, R(A) should be a table. The table is moved to
register R(A+1) as the state, while R(A) is set to the global function next,
which will serve as the iterator function for the generic for loop. After
changing to the Lua 5 form, the unconditional jump is then made.

Apart from a numeriéor loop (implemented by FORLOOP), Lua has a gerferidoop,
implemented by TFORLOOP:

TFORLOOP AC R(A+2), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));
if R(A+2) ~= nil then pc++

Performs an iteration of a generic for loop. A Lua 5-style generic for loop
keeps 3 items in consecutive register locations to keep track of things. R(A)
is the iterator function, which is called once per loop. R(A+1) is the state,
and R(A+2) is the enumeration index. At the start, R(A+2) has an initial
value.

Each time TFORLOOP executes, the iterator function referenced by R(A)
is called with two arguments: the state and the enumeration index (R(A+1)
and R(A+2).) The first return value must be the new value of the
enumeration index, and it is assigned to R(A+2). Additional values may be
returned in consecutive registers after R(A+2), and the field C specifies the
number of additional results. If C is 0, the enumeration index, R(A+2), is
the only returned result.

If the enumeration index becomes nil, then the iterator loop is at an end,
and TFORLOOP skips the next instruction (which is usually a jump to the
beginning of the loop body.)

A genericfor loop’s state is also kept in 3 consecutive registensthe registers contain very
different things. The iterator function is locatedRfA), and is namedfor generator) for
debugging purposes. The state is in R(A+1), and has the (hangate). The enumeration
index is contained in register R(A+2), while additibnasults from the iterator function is
placed into R(A+3), R(A+4) and so on.

The number of additional results is given in the €dfi The enumeration index is always
present, and along with additional results, have nomeal hariable names that are visible to
the programmer. A generior loop ends when the enumeration index becomiles

- 35-

This example has a loop with one additional res)lin addition the loop enumeratay:(

>for i,vin pairs(t) do print(i,v) end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 7 stacks
function 0007

Jocal "(for generator)" ;0

Jocal "(for state)" ; 1

Jocal "i" ;2

Jocal "v" ;3

.const "pairs" ;0

.const "t" ;1

.const "print" ; 2

01] getglobal 0 0O ; pairs
02] getglobal 1 1 p t

03] call 0 25

04] tforprep 0 4 ; to [9]
05] getglobal 4 2 ; print
06] move 5 2

07] move 6 3

08] call 4 31

09] tforloop O 1 ;to[11]if exit
10] jmp -6 ; to [5]
11]return 0 1

; end of function

Line [1]-[3] prepares register 0 to 3. Note that the twathepairs standard library function
has 1 parameter and 4 results. After the call in [Bje register 0O is the iterator function,
register 1 is the loop state, register 2 is the ink@ue of the enumeration index and
register 3 is the initial value of the additional result

The TFORPRERP in line [4] does not do anything for Lua 5-gjgleeric loops; for Lua 5 it is
essentially an unconditional JMP to line [9], where TEORP is encountered for the first
time. Sincepairs generate theeroth enumeration state, the first time TFORLOOP executes,
thefirst enumeration state of the generic loop is produced. Axbhditiresults are generated as
needed. If a loop is to be made, execution continugéiseimext line, which is a JMP to the
body of the generic loop (lines [5]-[8]). To drop out of thed, TFORLOOP skips the next
line, continuing to line [11].

repeat andwhile loops use a standard test-and-jump structure:

>local a =0; repeat a = a + 1 until a == 10
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0002

Jocal "a" ;0

.const 0 ;0

.const 1 ;1

.const 10 ; 2

[1]loadk 0 O ;0
[2] add 0 0 251 ;1
[3] eq 0 0 252 ;10,to[5]if true
[4]jmp -3 ;to[2]

[G]return 0 1

; end of function

The body of theepeat loop is line [2], while the test-and-jump scheme iplamented in
lines [3] and [4]. Two instructions are needed to loop the loop.

- 36-

>local a =1; while a <10 do a=a+ 1 end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0002

docal "a" ;0

.const 1 ;0

.const 10 ;1

[1]loadk 0 O 71
(2] jmp 1 , to [4]

[3] add 0 0 250 ;1

[4] 1t 1 0 251 ;10,to[6]if false
[5]jmp -3 ;1o [3]

[6] return O 1

; end of function

A while loop is quite similar to aepeat loop; the body of the loop comes first (line [3])
while the test-and-jump structure (lines [4] and [5]aisthe end of the loop body. Since
while does its test at the start of the loop, a IMP (lingi$2ddded.

In Iparser.c , it is explained that the reason for coding thedation after the loop body is
optimization, because one jump in the loop is avoidéds Inot clear whether having
condition testing at the start is slower than havingt the end. The way thehile code
generator function is implemented, with the conditiorthet end, leads to a limit to the
complexity ofwhile conditions, about 100 instructions, defined as MAXEXPWHILEisTs
due to a fixed buffer used to temporarily hold the instomstimaking up the condition.

Here is one way (untested) of implementing conditestimg before the body of the loop:

>local a =1; while a <10 do a=a+ 1 end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0002

docal "a" ;0
.const 1 ;0
.const 10 ;1

[1]loadk 0 O 71
[2] It 0 0 251 ;10,to [4] if true

[3] imp 1 ; to [5]
[4Jadd 0 0 250 ;1
[5]jmp -4 ;o [2]

[6] return O 1
: end of function

The sense of the condition test is reversed, whildoihye body is at line [4]. Line [3] jumps
out of thewhileloop, and line [5] jumps back to the condition test to regiealoop.

-37-

13 Table Creation

There are three instructions for table creation andilizitition. A single instruction creates a
table while the other two instructions sets table elements

NEWTABLE ABC R(A):={} (size = B,C)

Creates a new empty table at register R(A). B and C are the encoded size
information for the array part and the hash part of the table, respectively.
Appropriate values for B and C are set in order to avoid rehashing when
initially populating the table with values or key-value pairs.

B is a “floating point byte” (so named in lobject.c), encoded as
mmmmmxxix binary, where the actual value is: xxx*2* mmmmmThe actual
size of the array is rounded up and then encoded in field B. The parser
increments the array size for every exp field in the table constructor.

C is the log: value of the size of the hash portion, plus 1 and truncating the
fractional part. E.g. A size of 5 gives (int)(log.5 + 1), or 3. The value of O is
reserved for a hash size of 0. The parser increments the hash size for
every name=exp field in the table constructor.

Creating an empty table forces both array and hasel sizbe zero:

>l ocal q = {}

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0002

Jocal "g" ;0

[1] newtable 0 0 0 ;array=0, hash=0
[2] return 0 1

; end of function

In later examples, we will see how the size valuesacoded.

SETLIST A BXx R(A)[Bx-Bx%FPF+i] := R(A+i),
where 1 <= i <= Bx%FPF+1

Sets the values for a range of elements in a table referenced by R(A). Field
Bx contains an encoding of the range of elements to set, while the values
are located in the registers after R(A).

Bx is encoded using a block size, FPF. FPF is “fields per flush”, coded as
LFIELDS PER_FLUSH in the source file lopcodes.h , with a value of 32.
The remainder Bx%FPF gives the range, where 1 <=i <= BxX%FPF+1,
while the starting index for the table is Bx-Bx%FPF+i. SETLIST always sets
between 1 to FPF elements in a table.

Example: To set indices 33 to 64, Bx will be 63, then Bx%FPF is (63%32)
=31 and the range will be 1 to (31+1)=32, while the starting index, Bx-Bx%
FPF+1 is (63-31+1)=33. Thus indices 33 to 64 will be set, using values
from R(A+1) to R(A+32).

- 38-

We'll start with a simple example:

>local q ={1,2,3,4,5,}

; function [O] definition (level 1)

; 0 upvalues, 0 params, 6 stacks

function 0006

Jocal "g" ;0

.const 1 ;

.const 2 ;

.const 3 ;

.const 4 ;

.const 5 ;

newtable 0 5 0 ;array=5, hash=0

loadk 1

loadk 2

loadk 3
4
5

AWNEFLO

loadk
loadk
setlist 0
return O
: end of functio

L#WI\JI—‘O
GRrWNPEF

;’i dex1to5

O~NOUTHDWN -
>

Sk

A table with the reference in register O is createtine [1] by NEWTABLE. The array part
of the table has a size of 5, while the hash paral&se of 0. Constants are then loaded into
temporary registers (lines [2] to [6]) before the SESLlinstruction in line [7] assigns each
value to consecutive table elements. SETLIST's Bx vdkmdes to a block position of 0 (4
- 4%32) and an index range of 1 to 5. Table values arevedrieom temporary registers 1 to
5, since field A is 0.

Next up is a larger table. Some lines have been remoxkeedllgsis (...) added to save space.

>l ocal q ={1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0, \
>> 1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,}

; function [O] definition (level 1)

; 0 upvalues, 0 params, 33 stacks

function 000 33

Jocal "g" ;0

.const 1 ;0

.const 2 ;1

.const 0 ;9
Ol] newtable 0 29 0 ;array=40, hash=0
02] loadk
03] loadk
04] loadk

NEF O

30] loadk
31] loadk
32] loadk
33] loadk
34] setlist
35]loadk 1
36] loadk 2
37]loadk 3
38] setlist 0
39 return O
: end of function

Chowmwn wN -
WP O®
PR owoo
NROw© WNE

;index 1 to 32

abhws

‘index 33 to 35

>

FRrwn

Since FPF is 32, SETLIST works in blocks of 32, and the 35ezitsof tabley is split into a
block with a range of 1 to 32, and a second block with a rang@ tf 35.

- 39-

In line [1], NEWTABLE has a field B value of 29, or 11101bimary. From the description
of NEWTABLE, xxx is 10%, while mmmmima 1L. Thus, the size of the array portion of the
table is 5 x 273 or 40. With a maximum value of 7 x 273k, floating point byte is an
elegant way of encoding a table size.

In line [34], SETLIST has a Bx value of 31. The startingeix is (31 - 31%32 + 1) or 1, and
the ending index is (1 + 31%32) or 32. Source register totaare 1 to 32 (field A is 0).

In line [38], SETLIST has a Bx value of 34. The startimgeix is (34 - 34%32 + 1) or 33, and
the ending index is (33 + 34%32) or 35. Source register tosadre 1 to 3 (field A is 0).

Here is a table with hashed elements:

>l ocal q = {a=1, b=2,c=3,d=4, e=5,}
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

.function O 0 02

Jocal ' q

.const ' 0
.const 1 1
.const "b" ;2
.const 2 3
.const ' 14
.const 3 5
.const "d" ;6
.const 4 7
.const ' 18
.const 5 9

newtable 0 0 3 , array= =0, hash=8
settable 0 250 251 ;
settable 0 252 253 ;"b’
settable 0 254 255 ;"c"
settable 0 256 257 ;"d"
settable 0 258 259 ;"e"
return 0 1

: end of function

~NOoO 0T WN R
[P eNe) USD
O WNEF

In line [1], NEWTABLE is executed with an array part stde) and a hash part size of 8. The
hash size is encoded as an exponent, so from fieldi€calculated as 23 = 8. Key-value
pairs are set using SETTABLE; SETLIST is only for ializing array elements. Using
SETTABLE to initialize the key-value pairs of a table istgugfficient as it can reference the
constant pool directly.

The other table-creation instruction is SETLISTO:

SETLISTO A Bx R(A)[Bx-Bx%FPF+i] := R(A+i),
where A+1 <= A+i <= top of stack

SETLISTO is almost similar to SETLIST except that it is only used for the
last batch of values to be set, when the final element is a function call.
Since the function call can return a variable number of values, SETLISTO
sets the table with all values from R(A+1) up to the top of the stack. The
starting index is still calculated in the same way, as Bx-Bx%FPF+1. Only
the range of elements to be set is now variable.

- 40-

The SETLISTO instruction is generated when the finaldfof a table constructor is a
function. The Lua language specification states thatetlirm results of the function will be
entered into the table as array elements. SETLISTEry similar to SETLIST except that
the number of values to be set is up to the topawkstThe Bx field is still used, to specify
the starting table index to be set. Here is an example

>return {1, 2, 3,a=1, b=2,c=3,foo()}
; function [O] definition (level 1)

; 0 upvalues, 0 params, 5 stacks

function 0005

.const 1 ;0

.const 2 ;1

.const 3 ;2

.const "a" ;3

.const "b" ;4

.const "c" ;5

.const "foo" ;6

Ol]l newtable 0 4 2 ;array=4, hash=4

02]loadk 1 O 01
03]loadk 2 1 12
0O4]loadk 3 2 13

05] settable 0 253 250 ;"a"
06] settable 0 254 251 ;"b"
07] settable 0 255252 :"c"
08] getglobal 4 6 ; foo
09] call 4 10

10] setlisto 0 3 ; index 1 to top
11]return 0 2

12]return 0 1

: end of function

QT o
WN -

The table is created in line [1] with its referemeeegister 0, and it has both array and hash
elements to be set. The size of the array partvudile the size of the hash part is also 4.
Their sizes are encoded as 4 and 2, respectivelyielss fB and C of the NEWTABLE
instruction.

Lines [2]-[4] loads the values for the first 3 array eletaelLines [5]-[7] sets the 3 key-value
pairs for the hashed part of the table. In line [8] andtf#§ call to functiorioo is made, and
then in line [10], the SETLISTO instruction sets the f8array elements (in registers 1 to 3,)
plus whatever results returned by the function call (from register 4 onwards.) If no results
are returned by the function, the top of stack isegister 3 and only the 3 constant array
elements in the table are set.

-41-

14 Closures and Closing

The final two instructions of the Lua virtual machine ardittle involved because of the
handling of upvalues. The first is CLOSURE, for inskainig function prototypes:

CLOSURE A Bx R(A) := closure(KPROTO[BX], R(A), ... ,R(A+n))

Creates an instance (or closure) of a function. Bx is the function number of
the function to be instantiated in the table of function prototypes. This table
is located after the constant table for each function in a binary chunk. The
first function prototype is numbered 0. Register R(A) is assigned the
reference to the instantiated function object.

For each upvalue used by the instance of the function KPROTO[BX], there
is a pseudo-instruction that follows CLOSURE. Each upvalue corresponds
to either a MOVE or a GETUPVAL pseudo-instruction. Only the B field on
either of these pseudo-instructions are significant.

A MOVE corresponds to local variable R(B) in the current lexical block,
which will be used as an upvalue in the instantiated function. A
GETUPVAL corresponds upvalue number B in the current lexical block.
The VM uses these pseudo-instructions to manage upvalues.

If the function prototype has no upvalues, then CLOSURRretty straightforward: Bx has
the function number and R(A) is assigned the referdncthe instantiated function object.
However, when an upvalue comes into the picture, we toale@k a little more carefully:

>l ocal u; \

>>function p() return u end
; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks
function 0002

Jocal "u" ;0

.const "p" ;0

; function [0] definition (level 2)

; 1 upvalues, 0 params, 2 stacks
function 1002

.upvalue "u" ;0

[1] getupval 0 O ;U

[2] return O 2

[B]return 0 1

; end of function

[1] loadnil O O

[2] closure 1 O ; 1 upvalues
[3] move 00

[4] setglobal 1 O

[G]return 0 1

; end of function

In the example, the upvalue is and within the main chunk there is a single function
prototype (indented in the listing above for claritin)the top-level function, line [2], the
closure is made. In line [4] the function reference ig&danto globab. Line [3] is a part of
the CLOSURE instruction (it not really an actual MOQYENd its B field specifies that
upvalue number 0 in the closed function is really lacal the enclosing function.

- 42-

Here is another example, with 3 levels of function gigies:

>l ocal m\

>>function p() \

>> |ocal n\

>> function () return mn end \
>>end

; function [O] definition (level 1)

; 0 upvalues, 0 params, 2 stacks

function 0002

Jocal "m" ;0

.const "p" ;0

; function [O] definition (level 2)

; 1 upvalues, 0 params, 2 stacks
function 1002

Jocal "n" ;0

.upvalue "m" ;0

.const "q" ;0

; function [0] definition (level 3)

; 2 upvalues, 0 params, 2 stacks
function 2002

.upvalue "m" ;0

.upvalue "n" ;1

[1] getupval 0 O ;m

[2] getupval 1 1 ;N
[8]return 0 3

[4return 0 1

; end of function

[1] loadnil O O

[2] closure 1 O ; 2 upvalues
[3] getupval 0 O ;m

[4] move 00

[5] setglobal 1 0O el

[6] return O 1

; end of function

[1] loadnil O O

[2] closure 1 O ; 1 upvalues
[3] move 00

[4] setglobal 1 O P
[G]return 0 1

; end of function

First, look at the top-level function and the leveluBdtion — there is one upvalu®, In the
top-level function, the closure in line [2] has one enamstruction following it, for the
upvaluem. This is similar to the previous example.

Next, compare the level 2 function and the level Zfiom — now there are two upvalues,
andn. Them upvalue is found 2 levels up. In the level 2 function,dbsure in line [2] has
two instructions following it. The first is for upvalue nuentd) — it uses GETUPVAL to
indicate that the upvalue is one or more level lower ddwe. second is for upvalue number
1 (n) — it uses MOVE which indicate that the upvalue ishe same level as the CLOSURE
instruction. For both of these pseudo-instructions, th&el fs used to point either to the
upvalue or local in question. The Lua virtual machine uses itliormation (CLOSURE
information and upvalue lists) to manage upvalues; for thgrammer, upvalues just works.

- 43-

Our last instruction also deals with upvalues:

CLOSE A close all variables in the stack up to (>=) R(A)

Closes all local variables in the stack from register R(A) onwards. This
instruction is only generated if there is an upvalue present within those
local variables. It has no effect if a local isn’t used as an upvalue.

If a local is used as an upvalue, then the local variable need to be placed
somewhere, otherwise it will go out of scope and disappear when a lexical
block enclosing the local variable ends. CLOSE performs this operation for
all affected local variables for do end blocks or loop blocks. RETURN also
does an implicit CLOSE when a function returns.

It is easier to understand with an example:

>do \

>> Jocal p,qg\

>> r = function() return p,q end \
>>end

; function [O] definition (level 1)

; 0 upvalues, 0 params, 3 stacks

function 0003

Jocal "p" ;0
Jocal "g" ;1
.const "r" ;0

function [0] definition (level 2)
2 upvalues, 0 params, 2 stacks

function 2002
.upvalue "p" ;0
.upvalue "g" ;1
[1] getupval O O P
[2] getupval 1 1 i q
[8]return 0 3
[4return 0 1

~NOoO O WN R

end of function

loadnil 0 1

closure 2 0 ; 2 upvalues
move 00

move 01

setglobal 2 0 T

close O

return 0 1

: end of function

p andq are local to the&lo end block, and they are upvalues as well. The glohalassigned

an anonymous function that hasndq as upvalues. Whegmandq go out of scope at the end
of thedo end block, both variables have to be put somewhere bedhageare part of the
environment of the function instantiatedrinThis is where the CLOSE instruction comes in.

In the top-level function, the CLOSE in line [6] makée virtual machine find all affected
locals (they have to be open upvalues,) take them otlneaftack, and place them in a safe
place so that they do not disappear when the block otidumgoes out of scope. A RETURN

instruction does an implicit CLOSE so the latter wopp@ar very often in listings.

- 44-

15 Digging Deeper
For studying larger snippets of Lua code and its disassegthlycan try ChunkSpy’s various
disassembly functions. Both vmmerge5 and ChunkSpy can nsergee code lines into a

disassembly listing. ChunkSpy can provide more detadale it processes every bit of a
binary chunk.

A good way of studying how any instruction functions is td fimhere its opcode appears in
the Lua sources. For example, to see what MOVE doesfdodBP_MOVE inlparser.c

(the parser)icode.c (the code generator) andn.c (the virtual machine.) From the code
implementing OP_MOVE, you can then move deeper intoctite by following function
calls. | found this approach (bottoms up, following thesocmition path from generated
opcodes to the functions that performs code generasoal)little easier than following the
recursive descent parser’s call graph. Once you hav@idittle pictures, the big picture will
form on its own.

| hope you have enjoyed, as | did, poking your way thratghinternal organs of this Lua
thingy. Now that the Lua internals seem less magicdlraare practical, | look forward to
some Dr Frankenstein experiments with my newfound knowledge.

16 Acknowledgements
Any contributions will be acknowedged here.

17 ChangelLog & ToDos
Changes:

20050106 Typo. Fixed Size of Instruction field on page 7, to 4 b{tess 8 bytes.)
ToDos:

Rici Lake provided some very useful comments, includiigrmation on changes in the
upcoming Lua 5.1. When Lua 5.1 is released, this documenewvikvised.

- 45-

