
LuaExpat: XML Expat parsing for the Lua programming language

1 of 4 27.06.2007 13:25

LuaExpat
XML Expat parsing for the Lua programming language

Introduction

LuaExpat is a SAX XML parser based on the Expat library. SAX is the Simple API for XML and allows programs to:

process a XML document incrementally, thus being able to handle huge documents without memory penalties;
register handler functions which are called by the parser during the processing of the document, handling the document elements or text.

With an event-based API like SAX the XML document can be fed to the parser in chunks, and the parsing begins as soon as the parser receives the first document
chunk. LuaExpat reports parsing events (such as the start and end of elements) directly to the application through callbacks. The parsing of huge documents can
benefit from this piecemeal operation.

LuaExpat is distributed as a library and a file lom.lua that implements the Lua Object Model.

Building

LuaExpat could be built to Lua 5.0 or to Lua 5.1. In both cases, the language library and headers files for the desired version must be installed properly.
LuaExpat also depends on Expat 2.0.0 which should also be installed.

LuaExpat offers a Makefile and a separate configuration file, config, which should be edited to suit the particularities of the target platform before running
make. The file has some definitions like paths to the external libraries, compiler options and the like. One important definition is the version of Lua language,
which is not obtained from the installed software.

Installation

The compiled binary file should be copied to a directory in your C path. Lua 5.0 users should also install Compat-5.1.

Windows users can use the binary version of LuaExpat (lxp.dll, compatible with LuaBinaries) available at LuaForge.

The file lom.lua should be copied to a directory in your Lua path.

Parser objects

Usually SAX implementations base all operations on the concept of a parser that allows the registration of callback functions. LuaExpat offers the same
functionality but uses a different registration method, based on a table of callbacks. This table contains references to the callback functions which are responsible
for the handling of the document parts. The parser will assume no behaviour for any undeclared callbacks.

Constructor

lxp.new(callbacks [, separator])

LuaExpat: XML Expat parsing for the Lua programming language

2 of 4 27.06.2007 13:25

The parser is created by a call to the function lxp.new, which returns the created parser or raises a Lua error. It receives the callbacks table and optionally
the parser separator character used in the namespace expanded element names.

Methods

parser:close()
Closes the parser, freeing all memory used by it. A call to parser:close() without a previous call to parser:parse() could result in an error.

parser:getbase()
Returns the base for resolving relative URIs.

parser:getcallbacks()
Returns the callbacks table.

parser:parse(s)
Parse some more of the document. The string s contains part (or perhaps all) of the document. When called without arguments the document is closed (but
the parser still has to be closed).
The function returns a non nil value when the parser has been succesfull, and when the parser finds an error it returns five results: nil, msg, line, col, and pos,
which are the error message, the line number, column number and absolute position of the error in the XML document.

parser:pos()
Returns three results: the current parsing line, column, and absolute position.

parser:setbase(base)
Sets the base to be used for resolving relative URIs in system identifiers.

parser:setencoding(encoding)
Set the encoding to be used by the parser. There are four built-in encodings, passed as strings: "US-ASCII", "UTF-8", "UTF-16", and "ISO-8859-1".

Callbacks

The Lua callbacks define the handlers of the parser events. The use of a table in the parser constructor has some advantages over the registration of callbacks,
since there is no need for for the API to provide a way to manipulate callbacks.

Another difference lies in the behaviour of the callbacks during the parsing itself. The callback table contains references to the functions that can be redefined at
will. The only restriction is that only the callbacks present in the table at creation time will be called.

The callbacks table indices are named after the equivalent Expat callbacks:
CharacterData, Comment, Default, DefaultExpand, EndCDataSection, EndElement, EndNamespaceDecl, ExternalEntityRef, NotStandalone, NotationDecl,
ProcessingInstruction, StartCDataSection, StartElement, StartNamespaceDecl, and UnparsedEntityDecl.

These indices can be references to functions with specific signatures, as seen below. The parser constructor also checks the presence of a field called _nonstrict
in the callbacks table. If _nonstrict is absent, only valid callback names are accepted as indices in the table (Defaultexpanded would be considered an error for
example). If _nonstrict is defined, any other fieldnames can be used (even if not called at all).

The callbacks can optionally be defined as false, acting thus as placeholders for future assignment of functions.

Every callback function receives as the first parameter the calling parser itself, thus allowing the same functions to be used for more than one parser for example.

LuaExpat: XML Expat parsing for the Lua programming language

3 of 4 27.06.2007 13:25

callbacks.CharacterData = function(parser, string)
Called when the parser recognizes an XML CDATA string.

callbacks.Comment = function(parser, string)
Called when the parser recognizes an XML comment string.

callbacks.Default = function(parser, string)
Called when the parser has a string corresponding to any characters in the document which wouldn't otherwise be handled. Using this handler has the side
effect of turning off expansion of references to internally defined general entities. Instead these references are passed to the default handler.

callbacks.DefaultExpand = function(parser, string)
Called when the parser has a string corresponding to any characters in the document which wouldn't otherwise be handled. Using this handler doesn't affect
expansion of internal entity references.

callbacks.EndCdataSection = function(parser)
Called when the parser detects the end of a CDATA section.

callbacks.EndElement = function(parser, elementName)
Called when the parser detects the ending of an XML element with elementName.

callbacks.EndNamespaceDecl = function(parser, namespaceName)
Called when the parser detects the ending of an XML namespace with namespaceName. The handling of the end namespace is done after the handling of
the end tag for the element the namespace is associated with.

callbacks.ExternalEntityRef = function(parser, subparser, base, systemId, publicId)
Called when the parser detects an external entity reference.

The subparser is a LuaExpat parser created with the same callbacks and Expat context as the parser and should be used to parse the external entity.
The base parameter is the base to use for relative system identifiers. It is set by parser:setbase and may be nil.
The systemId parameter is the system identifier specified in the entity declaration and is never nil.
The publicId parameter is the public id given in the entity declaration and may be nil.

callbacks.NotStandalone = function(parser)
Called when the parser detects that the document is not "standalone". This happens when there is an external subset or a reference to a parameter entity, but
the document does not have standalone set to "yes" in an XML declaration.

callbacks.NotationDecl = function(parser, notationName, base, systemId, publicId)
Called when the parser detects XML notation declarations with notationName
The base parameter is the base to use for relative system identifiers. It is set by parser:setbase and may be nil.
The systemId parameter is the system identifier specified in the entity declaration and is never nil.
The publicId parameter is the public id given in the entity declaration and may be nil.

callbacks.ProcessingInstruction = function(parser, target, data)
Called when the parser detects XML processing instructions. The target is the first word in the processing instruction. The data is the rest of the characters
in it after skipping all whitespace after the initial word.

callbacks.StartCdataSection = function(parser)
Called when the parser detects the begining of an XML CDATA section.

callbacks.StartElement = function(parser, elementName, attributes)
Called when the parser detects the begining of an XML element with elementName.
The attributes
parameter is a Lua table with all the element attribute names and values. The table contains an entry for every attribute in the element start tag and entries for
the default attributes for that element.

LuaExpat: XML Expat parsing for the Lua programming language

4 of 4 27.06.2007 13:25

The attributes are listed by name (including the inherited ones) and by position (inherited attributes are not considered in the position list).
As an example if the book element has attributes author, title and an optional format attribute (with "printed" as default value),

<book author="Ierusalimschy, Roberto" title="Programming in Lua">

would be represented as

{[1] = "Ierusalimschy, Roberto",
 [2] = "Programming in Lua",
 author = "Ierusalimschy, Roberto",
 format = "printed",
 title = "Programming in Lua"}

callbacks.StartNamespaceDecl = function(parser, namespaceName)
Called when the parser detects an XML namespace declaration with namespaceName. Namespace declarations occur inside start tags, but the
StartNamespaceDecl handler is called before the StartElement handler for each namespace declared in that start tag.

callbacks.UnparsedEntityDecl = function(parser, entityName, base, systemId, publicId, notationName)
Called when the parser receives declarations of unparsed entities. These are entity declarations that have a notation (NDATA) field.
As an example, in the chunk

<!ENTITY logo SYSTEM "images/logo.gif" NDATA gif>

entityName would be "logo", systemId would be "images/logo.gif" and notationName would be "gif". For this example the publicId parameter would be nil.
The base parameter would be whatever has been set with parser:setbase. If not set, it would be nil.

The separator character

The optional separator character in the parser constructor defines the character used in the namespace expanded element names. The separator character is
optional (if not defined the parser will not handle namespaces) but if defined it must be different from the character '\0'.

$Id: manual.html,v 1.27 2007/06/05 20:03:12 carregal Exp $

